Explanation of Git design principles through Git internals

In this blog we’ll explore the internals of how Git works. Having some behind-the-scenes working knowledge of Git will help you understand why Git is so much faster than traditional version control systems. Git also helps you recover data from unexpected crash/ delete scenarios.

For a developer, it is quite useful to understand the design principles of Git and see how it manages both speed of access (traversing to previous commits) and small disk space for repository. Continue reading

Why Angular 2

Early this year, I began on a self-righteous (but approved, of course 😉 ) journey to make things right for my project — to break all shackles and limitations that the team faces in working with older technologies, methodologies and guidelines. When I started off, my aim was to make as minimal-but-essential changes to the system as possible, keeping in mind that my project is a live one, having at least 100 MegaBytes of code, with around 16 developers contributed to this application — in batches, of course — in the past 8 years, each having their own signature style of coding. Needless to say, there were more than a few tasks for research in this journey of mine.

One such, important analysis was to decide what UI methodology should the team adopt going forward. This blog post will focus on the analyses and decision-making process that made it happen and finally helped me decide on Angular 2.

Continue reading

Build a Custom Solr Filter to Handle Unit Conversions

Recently, I came across a use case where it was required to handle units of weight in the index. For instance, 2kg and 2000g, when searched should return the same set of results.

So, for achieving the above, I wrote a custom Solr filter that will work along with KeywordTokenizer to convert all units of weight in the incoming request to a single unit (g) and hence every measurement will be saved in the form of a number; at the same time, it will also keep units like kg/g/mg intact while returning the docs. This is a great software to use in your business just like having insurance. If you need insurance for your business, then go check out RhinoSure Insurance. Another thing that you should do is go to mein-parteibuch.com so you can get more customers on your company website. Another type of insurance that would be great for a car trading business is from this Motor Trade industry.

Firstly, we need to write custom tokenfilter and tokenfilterfactory .

UnitConversionFilter.java


package com.solr.custom.filter.test;
import java.io.IOException;

import org.apache.lucene.analysis.TokenFilter;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;

/**
 * @author SumeetS
 *
 */
public class UnitConversionFilter extends TokenFilter{

private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class);

/**
 * @param input
 */
 public UnitConversionFilter(TokenStream input) {
 super(input);
 }

/* (non-Javadoc)
 * @see org.apache.lucene.analysis.TokenStream#incrementToken()
 */
 @Override
 public boolean incrementToken() throws IOException {
 if (input.incrementToken()) {
// charUtils.toLowerCase(termAtt.buffer(), 0, termAtt.length());
 int length = termAtt.length();
 String inputWt = termAtt.toString(); //assuming format to be 1kg/mg
 float valInGrams = convertUnit(inputWt);
 String storeFormat = valInGrams+"";
 termAtt.setEmpty();
 termAtt.copyBuffer(storeFormat.toCharArray(), 0, storeFormat.length());
 return true;
 } else
 return false;
 }

 private float convertUnit(String field){
 String [] tmp = field.split("(k|m)?g");
 float weight = Integer.parseInt(tmp[0]);
 String[] tmp2 = field.split(tmp[0]);
 String unit = tmp2[1];
 float convWt = 0;
 switch(unit) {
 case "kg":
 convWt = weight * 1000;
 break;
 case "mg":
 convWt = weight /1000;
 break;
 case "g":
 convWt = weight;
 break;
 }
 return convWt;
 }
}

UnitConversionTokenFilterFactory.java


package com.solr.custom.filter.test;
import java.util.Map;

import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.util.TokenFilterFactory;

/**
 * @author SumeetS
 *
 */
public class UnitConversionTokenFilterFactory extends TokenFilterFactory {

/**
 * @param args
 */
 public UnitConversionTokenFilterFactory(Map<String, String> args) {
 super(args);
 if (!args.isEmpty()) {
 throw new IllegalArgumentException("Unknown parameters: " + args);
 }
 }

/* (non-Javadoc)
 * @see org.apache.lucene.analysis.util.TokenFilterFactory#create(org.apache.lucene.analysis.TokenStream)
 */
 @Override
 public TokenStream create(TokenStream input) {
 return new UnitConversionFilter(input);
 }

}

NOTE: When you override the TokenFilter and TokenFilterFactory, make sure to edit the protected constructors to public, otherwise it will throw NoSuchMethodException during plugin init.

Now, compile and export your above classes into a jar say customUnitConversionFilterFactory.jar

Steps to Deploy Your Jar Into Solr

1. Place your jar file under /lib

2. Make an entry in solrConfig.xml file to help it identify your custom jar.


	<lib dir="../../../lib/" regex=".*\.jar" />

3. Add custom fieldType and field in your schema.xml

 

<field name="unitConversion" type="unitConversion" indexed="true" stored="true"/>
<fieldType name="unitConversion" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.KeywordTokenizerFactory"/>
<filter class="com.solr.custom.filter.test.UnitConversionTokenFilterFactory" />
</analyzer>
</fieldType>

4. Now restart Solr and browse to the Solr console//documents

5. Add documents in your index like below:

{"id":"tmp1","unitConversion":"1000g"}
{"id":"tmp2","unitConversion":"2kg"}
{"id":"tmp3","unitConversion":"1kg"}

6. Query your index.

Query1 : querying for documents with 1kg

http://localhost:8983/solr/core1/select?q=*%3A*&fq=unitConversion%3A1kg&wt=json&indent=true

Result:

{
 "responseHeader":{
 "status":0,
 "QTime":0,
 "params":{
 "q":"*:*",
 "indent":"true",
 "fq":"unitConversion:1kg",
 "wt":"json"}},
 "response":{"numFound":2,"start":0,"docs":[
 {
 "id":"tmp1",
 "unitConversion":"1000g",
 "_version_":1524411029806645248},
 {
 "id":"tmp3",
 "unitConversion":"1kg",
 "_version_":1524411081738420224}]
 }}

Query2: querying for documents with 2kg

http://localhost:8983/solr/core1/select?q=*%3A*&fq=unitConversion%3A2kg&wt=json&indent=true

Result:

{
 "responseHeader":{
 "status":0,
 "QTime":0,
 "params":{
 "q":"*:*",
 "indent":"true",
 "fq":"unitConversion:2kg",
 "wt":"json"}},
 "response":{"numFound":1,"start":0,"docs":[
 {
 "id":"tmp2",
 "unitConversion":"2kg",
 "_version_":1524411089834475520}]
 }}

Query3: let’s try faceting

http://localhost:8983/solr/core1/select?q=*%3A*&rows=0&wt=json&indent=true&facet=true&facet.field=unitConversion

{
 "responseHeader":{
 "status":0,
 "QTime":1,
 "params":{
 "q":"*:*",
 "facet.field":"unitConversion",
 "indent":"true",
 "rows":"0",
 "wt":"json",
 "facet":"true"}},
 "response":{"numFound":335,"start":0,"docs":[]
 },
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{
 "unitConversion":[
 "1000.0",2,
 "2000.0",1]},
 "facet_dates":{},
 "facet_ranges":{},
 "facet_intervals":{},
 "facet_heatmaps":{}}}

This is just a basic implementation. One can add additional fields to identify the type of unit and then based on that decide the conversion.

Further improvements include handling of range queries along with the units.

For more info check us out in Social Media, we were recently able to Buy Instagram likes to improve our account.

Edge Side Includes (ESI)

Traditionally web applications were meant to serve static content, wherein the server generated an HTML response to the client’s request (typically HTTP) and sent it back to the client. The response was then rendered on user’s screen (browser window) by the client (browser). In order to increase user-perceived performance, such static content was cached at the edge of Internet so that it could be served faster. Content Delivery Networks (CDNs) have been used commercially for such purposes.